

Graph of $r(v)$

Like fl cars, sonic planes \downarrow
\downarrow
$372.5^{\mathrm{km} / \mathrm{n}} \quad 3.500 \mathrm{~km} / \mathrm{n}$
$\Rightarrow \beta \simeq 1\left\{\begin{array}{c}\text { Similar } \\ \text { numbers } \\ \text { dividing } \\ \text { each other }\end{array}\right\}$

Like subatomic particles \downarrow
$v=0.99975 c$

Returning to the previous experiment:

$$
\begin{gathered}
(\Delta t)^{\prime}=\gamma(\Delta t) \\
\text { As } \gamma \geq 1 \Rightarrow(\Delta t)^{\prime} \geq(\Delta t)
\end{gathered}
$$

The moving observer's time lapse $(\Delta t)^{\prime}$ is longer than the time lapse (Δt) in the 'static'
 frame of reference.

The square might claim that the triangle's watch is running too slow.
: $+\left\{\begin{array}{l}\text { Ana! Then, the time for the square } \\ \text { runs faster! so you are violating } \\ \text { Dr Dylan's postulate of relativity } \\ \text { because Dhysics are different with } \\ \text { respect to each observer! }\end{array}\right.$

Your time is moving too slow!

Dylaris postulate dictates that there shoud be some kind of RECIPROCITY between observers because each of them has
a VAlID Inertial frame.

Now, the spocetime diagram would look like this:

NOTE: both observers perceive that measuring from their frame of reference the other one's time is running slow in the same proportion.

It is not a paradox, it's a matter of perception.

Like in the case of SIMULTANIETY
MORAL the RATE of TIME is dependent of the observer.

We can say that time dilation is in fact a consequence of the failure of simultaneity!

Let's spice things up:

$$
\begin{aligned}
& \text { THOUGHT } \\
& \text { EXPERIMENT } 2
\end{aligned}
$$

〈 Flash gets a sandwich >

Exercise: Explain with a ST-diagram if this meme makes any sense

discussion

- What are the simultaniety lines telling us?
- In which ways is this experiment similar to the previous one?
- What can be said about the symmetry of the problem?
- Do they both (the Flash and the criminal) have a valid reference frame?
- What happens in the gray area of the ST diagram?

Let's put numbers to it!
Suppose the flash runs at $\frac{24}{25} c$ and the Tim Hortons is at $\underbrace{2.2 \times 10^{8} s}$ (running at that speed).

$$
\simeq 7 \text { years }
$$

How older is the criminal when the Flash is bock?

1P until now, we have never made any kind of assertion regarding the speed of light as the " speed limit of the universe", or anything similor

SPEED LIMIT 299,792,458 m / s

We only have its invariance (Jagger's postulate)

Let's suppose that we are able to invent a

くTへCHYONIC
NNTITELEPHONE3 \downarrow
device that let's us communicate FT L
"faster than light"
THOUGHT EXPERIMENT:

A: our sun explotes
B : people on Alpha Centuri see the explotion
\longrightarrow We send then a FTL message alerting them
c : they receive the message

Before A, we sent on expedition to Alpha centuri.

- Simultaneity lines from the speceship frame of reference

What can we conclude with respect to the simultaneity lines that cross the $A \& C$ events?

From the perspective of the people inside the spaceship the message arrive before it is created!

EFFll T-precedes $<l a U S E$

\therefore It is not possible to have this type of communication

LORENTZ TRANSFORMATIONS

At this point we nave come (geometrically) familiarized with the stretchy \& rotational nature of changing one inertial frame of reference to another one.

Now is a good time to establish algebraically a relationship between coordinate systems, in a similar fashion as Galilean trans formations.

We are able to sense that the proposed transformation must:

- interlace time \& space coordinates (with the help of v as currency of exchange
- be able to replicate Galilean transformations when the velocities are small.
- symmetrical with respect to observers.

LORENTZ TRANSFORMATIONS

$$
\begin{aligned}
& x^{2}=\gamma(x-v t) \\
& t^{2}=\gamma\left(t-\frac{v}{c^{2}} x\right)
\end{aligned}
$$

Deduction: Let's take on event that is connected to the origin by o light path:

Let's take the galilean transformation and scale it by some unknown factor

$$
x^{\prime}=\alpha(x-v t)
$$

$$
x=\alpha\left(x^{\prime}+v t^{\prime}\right)
$$

same factor!
Now multiplying both of the expressions:

$$
\begin{aligned}
x^{\prime} x & =\alpha^{2}(x-v t)\left(x^{\prime}+v t^{\prime}\right) \\
& =\alpha^{2}\left(x x^{\prime}+x v t^{\prime}-x^{\prime} v t-v^{2} t t^{\prime}\right)
\end{aligned}
$$

For our event in particular we have that

$$
x_{0}=c t_{0} \quad \& \quad x_{0}^{\prime}=c t_{0}^{2}
$$

Subs tituting (and ignoring the nought)

$$
\begin{aligned}
& x^{\prime} x=\alpha^{2}\left(x x^{\prime}+x v t^{2}-x^{2} v t-v^{2} t t^{\prime}\right) \\
\Rightarrow & \left(c t^{\prime}\right)(c t)=\alpha^{2}\left(c^{2} t t^{\prime}+c t^{2} v-c v^{2} v-v^{2} t t^{2}\right) \\
\Rightarrow & c^{2} y^{\prime} t=\alpha^{2} t^{\prime} t\left(c^{2}-v^{2}\right) \\
& \therefore \alpha^{2}=\frac{c^{2}}{c^{2}-v^{2}} \\
\Rightarrow & \alpha^{2}=\frac{\frac{c^{2} 2^{2}}{c^{2}}}{c^{2}}=\frac{1}{1-\frac{v^{2}}{c^{2}}}=\frac{1}{1-\beta^{2}}=\gamma^{2}
\end{aligned}
$$

We have found Lorentz factor aga in!

It is left to the reader to corroborate now the transformation for the time variable.

A "cleaner" version of 2T. con be stated as:

$$
\begin{aligned}
& x^{\prime}=\gamma(x-\beta c t) \\
& c t^{\prime}=\gamma(c t-\beta x)
\end{aligned}
$$

